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Magnetic dipolar interactions in solids
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Magentic dipolar interactions. . .
» Broaden spectral lines in NMR (Linta Joseph, J33.00003)
» Lead to decay of central spin coherence in bath (Ethan
Williams, L29.00010)
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Decoupling dipolar interactions would narrow spectral lines and
increase coherence times.



Average Hamiltonian theory

If...

» Consider cyclic and periodic pulse sequences

Ctrl(tC) =1 Hctrl(f) = ctr|(t + Ntc)

» Observe system stroboscopically (t = Nt.)

.. then system appears to evolve under an effective average
Hamiltonian.
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Existing approaches to Hamiltonian engineering

» WAHUHA 4-pulse sequence (Waugh et al. 1968), decouples
dipolar interaction to lowest-order

» CORY 48-pulse sequence (Cory et al. 1990) designed
analytically using AHT to be robust to experimental
imperfections, decouples all interactions to second order
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AHT limitations

ﬁ(o)

1 [
—/ Hsys(t)dt

2Itc/ dtl/ dty Hsys(tl Hsys(tZ)]

H? —

2)

/ dtl/ dt2/ dt3{ Hsys tl) [Hsys t2) Hsys(t3 ]

]
+ [[Hsys(tl) HsyS(tZ)] HSYS(t3 ]}
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Reinforcement learning for Hamiltonian engineering
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From Sutton & Barto 2018.

» State — propagator

» Action — control pulses

: Tr(Uf, U
> Reward — propagator fidelity (Re r(tgt(t))>

Tr(1)

action
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Constructing pulse sequences using AlphaZero

Implemented AlphaZero algorithm (Silver et al. 2018, originally for
Chess, Shogi, and Go), though there are many different RL
approaches (Peng et al. 2021, P33.00001).
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Computational results

Goal: decouple all interactions (H = 0) in strongly coupled spin
systems with experimental imperfections.
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» Unconstrained search (tabula rasa, no AHT knowledge), 1%
pulse rotation error, different pulse sequence lengths
(127,247,367,487)

» AHT-constrained search, 1% pulse rotation error, 487
sequence length



Fidelity vs. pulse sequence length

Fidelity vs pulse sequence length over 288t
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Robustness to pulse rotation error: AHT constraints

Infidelity over 288t
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Robustness to phase transient error

Infidelity over 288t
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Fidelity vs. tau spacing

Infidelity over 288t
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Experimental results
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» Decoupling dipolar interactions is important for narrowing
linewidths, increasing coherence times
> RL is promising new tool to design new pulse sequences

» Tailored control for specific system characteristics and errors
» Best-performing approach likely is a mix of RL and knowledge
from AHT



» Decoupling dipolar interactions is important for narrowing
linewidths, increasing coherence times
> RL is promising new tool to design new pulse sequences

» Tailored control for specific system characteristics and errors
» Best-performing approach likely is a mix of RL and knowledge
from AHT

Thanks for listening!
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Quantum control in spin systems

H(t) - Hsys + Hctrl(t)

Can use Hcyi(t) to achieve a unitary transformation U given by an
effective Hamiltonian Heg.

control \\ Ol d13\\‘\‘\\ (53
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Heystem = 32 0112 + S0, (314 — 1F- li) = Hes + Hp



Quantum control in spin systems

Hyys = Zé I+ Z dj (3/;/; 0. p')

= Hcs + Hp

Hetr t) = —B]_ ny’ - Bg(t) Z,}/I /i



Average Hamiltonian Theory (AHT)

The time-evolution operator (or propagator) follows the differential
equation

.d
'Eu(t) = H(t)U(t)
u)=1

The Magnus Expansion gives an exponential solution for the
propagator via an average Hamiltonian H at time t

U(t) = exp (—iﬁt)

with H=H + H + ...
The series converges rapidly when t||H|| < 1.



AHT (cont.)

We often work in the interaction frame of the control Hamiltonian,
with transformation operator

d

E Uctrl(t) = _iHctrI(t) Uctrl(t)

Uctrl (O) =1

So the Hamiltonian in the interaction frame becomes

H(t) = Hsys(t) - Uctrl(t)THsys Uctrl(t)
Brinkmann 2016.



AHT: Pulse sequences

If a pulse sequence is both cyclic and periodic Gerstein &
Dybowski 1985

te
Uctrl(tc) = Texp (-I/ Hctrl(t)dt) =41 (cyclic)
0
Hetri(t) = Heen(t + Nt.) (periodic)

then the interaction frame and the lab frame coincide at multiples
of the cycle time, and the propagator can be given by

U(te) = exp (—itc(ﬁ(o) v HY ))

Higher-order terms for average Hamiltonian become nasty. ..



AHT: Special Cases

» Symmetric pulse sequences (H(7) = H(t. — 7)): all odd-order
terms in average Hamiltonian are zero

» Antisymmetric pulse sequences (H(7) = —H(t. — 7)): all
terms in average Hamiltonian are zero



Simulation/RL parameters

» N = 3 spin-1/2 system, &; ~ N(0, 1), djj ~ N(0,100)

» Delay 7 = 107, pulse length t, = 10°

» Ensemble of 50 spin systems with different chemical shifts and
dipolar interactions

v

Replay buffer size: 10° “experiences” ((s, a, r))
> Batch size: 2048
» Training duration: 10* training steps

Tr (Ularger U(E))
Tr(1)

For RL algorithm performance, use log infidelity as “reward”

fidelity(U, Utarget) = Re

r = —log (1 — fidelity)

r=4 < fidelity = 0.9999



Computational results: AlphaZero algorithm learns
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unconstrained search
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Comparison between RL approaches

Different RL algorithm used by our collaborators (Peng et al.

2021).
Characteristic Evolutionary Reinforcement Learning AlphaZero
State represen- | Sequence of previous pulses Same
tation
Action space Delay or 7/2-pulse along £X, £Y Same
Learning Evolutionary algorithms (gradient-free) Tree search and
method experience  replay

(gradient based)
Prior knowledge | Builds longer sequences from shorter | Uses AHT to prune
ones tree search

Pulse sequences | yxx48 az48

(Heis = 0)




Neural network structure

GRU = gated recurrent unit
relu = residual activation layer
fc = fully connected layer




AlphaZero algorithm

Explore new pulse sequences
1. Start with a zero-length pulse sequence as the root node

2. With the given root node, perform Monte Carlo Tree Search
(MCTS) to explore potential pulses
MCTS uses a neural network to estimate the prior
probabilities for selecting each pulse and the value (fidelity)
for the final pulse sequence

3. Sample the next pulse from the root node's children weighted
by their visit counts

4. Repeat steps 2-4 until a complete pulse sequence is
determined

5. Record the child nodes’ visit counts and final pulse sequence
fidelity to a data buffer for training

Parameters for MCTS, training, etc.



AlphaZero algorithm (cont.)

Train neural networks on collected data
» Policy loss: want to minimize the difference between MCTS
visit counts p and learned policy g

» Value loss: want to minimize the difference between
calculated fidelity from pulse sequence z and predicted fidelity
from neural network v

» L2 regularization: prevent overfitting to data
> /(0) = —p - logms + (z — v)? + c||0] |2



Neural network training

training_policy_loss -
9-policy training_value_loss
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Training performance
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Pulse sequences identified using AlphaZero

az48 pulse sequence (decouple all interactions):
=X, Y, .Y, ., X,7,Y, 1, Y, T

Y, X, , X, 7, =Y, 7, X, 7, X, T

Y, . X,r,.X,7,=Y, 7, X, 7, X, T

Y, X, 7,=Y, ., X, 7, X, 7, =Y, T

X, = X,n,Y,n,Y,1,—-X,T1,Y,T

Y, 7,.-Y, . X,7,—-Y,7,=Y, 7, X, T

Y, X, , X, 7,=Y, 1, X, 7, X, T

=Y, r,— X, 7, X, 7,=Y, 1, X, 7, - X, T



RL advantages and disadvantages

» Generalized approach to learning problem: no assumed prior
knowledge

» Can tailor problem to specific system of interest (e.g. strongly
coupled system, timing precision constraints)

» Robustness against known errors by including them in
simulation of spin system



RL advantages and disadvantages

» Generalized approach to learning problem: no assumed prior
knowledge

» Can tailor problem to specific system of interest (e.g. strongly
coupled system, timing precision constraints)

» Robustness against known errors by including them in
simulation of spin system

» Computationally expensive

v

Poor accuracy of many-body spin simulations

» No guarantees for convergence to optimal (or good) solution
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