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Magnetic dipolar interactions in solids

central spin

bath spins

rest of universe

From Facey 2008.
Magentic dipolar interactions. . .
I Broaden spectral lines in NMR (Linta Joseph, J33.00003)
I Lead to decay of central spin coherence in bath (Ethan

Williams, L29.00010)

Hsys =
∑

i

δi I i
z +
∑

i,j

dij
(
3I i

z I j
z − Ii · Ij) = HCS + HD

Decoupling dipolar interactions would narrow spectral lines and
increase coherence times.
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Average Hamiltonian theory

If. . .
I Consider cyclic and periodic pulse sequences

Uctrl(tc) = 1,Hctrl(t) = Hctrl(t + Ntc)

I Observe system stroboscopically (t = Ntc)
. . . then system appears to evolve under an effective average
Hamiltonian.
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Existing approaches to Hamiltonian engineering
I WAHUHA 4-pulse sequence (Waugh et al. 1968), decouples

dipolar interaction to lowest-order
I CORY 48-pulse sequence (Cory et al. 1990) designed

analytically using AHT to be robust to experimental
imperfections, decouples all interactions to second order
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AHT limitations

H(0) =
1
tc

∫ tc

0
H̃sys(t)dt

H(1) =
1

2itc

∫ tc

0
dt1

∫ t1

0
dt2
[
H̃sys(t1), H̃sys(t2)

]
H(2) = −

1
6tc

∫ tc

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3
{[

H̃sys(t1),
[
H̃sys(t2), H̃sys(t3)

]]
+
[[

H̃sys(t1), H̃sys(t2)
]
, H̃sys(t3)

]}

!HðnÞ ¼ 0 for all even n; (38)

leading to

!H ¼ !Hð1Þ þ !Hð3Þ þ !Hð5Þ þ . . . (39)

This is an important property and tool in the design of
multiple pulse sequences, where often a particular first
order average Hamiltonian is desired, whereas higher
orders ideally should disappear, especially in the pres-
ence of errors in the pulse sequence or large disruptive
spin interactions, such as rf frequency offsets or chemi-
cal shift anisotropies.8,34,35

iii H(t) is antisymmetric:
If H(ta + s) = %H(tb % s) for any 0 ≤ s ≤ (tb % ta),
H(t) is referred to as being antisymmetric in time over
the time interval [ta, tb]. This case results in all orders
of average Hamiltonian terms disappearing:34

!HðnÞ ¼ 0 for all n; (40)

which leads to

!H ¼ 0 ð41Þ
Uðtb; taÞ ¼ 1; ð42Þ

ie, the propagator is identical to unity, hence the spin
system at time point tb has returned to its initial state at
time point ta. Although this might look trivial, NMR
techniques exploiting this characteristic, such as spin
echoes36 and rotational echoes25 are highly important
over a wide range of applications.

iv H(t) is piecewise time-independent: The last case we
would like to consider in this list is that of a Hamiltonian
H(t), which is piecewise time-independent over the inter-
val [ta, tb]. Consider the division of [ta, tb] into N sub-
intervals [tk, tk+1] with durations sk = tk+1 % tk, so that

HðtÞ ¼Hk for tk& t& tkþ1 and k¼ 1; . . . ;N; (43)

where t1 ' ta and tN+1 ' tb. In this case, the first two
orders of the Magnus expansion in general are given by

!Hð1Þ ¼ 1
T

XN

k¼1

Hksk ð44Þ

!Hð2Þ ¼ 1
2iT

XN

k¼2

Xk%1

l¼1

!
Hk;Hl

"
sksl: ð45Þ

The third order is more complicated to write out in gen-
eral. Therefore, we consider the simple case of two sub-
intervals of [ta, tb] over which H(t) is piecewise time-inde-
pendent. This is depicted in Figure 5. In this case, the first
three orders of the Magnus expansion simplify to

!Hð1Þ ¼ 1
T
#
H1s1 þ H2s2

$
ð46Þ

!Hð2Þ ¼ 1
2iT

!
H2;H1

"
s2s1 ð47Þ

!Hð3Þ ¼ % 1
12T

%h
H2;

!
H2;H1

"i
s22s1

þ
h!
H2;H1

"
;H1

i
s2s21

&
; ð48Þ

where the integration intervals, areas and volumes for
each order are shown in Figure 5, respectively. Since the
Hamiltonian is piecewise time-independent solely, pair-
wise different blocks have to be considered in the commu-
tators in Equations 31 and 32. Hence, solely the integral
over the area of size s2s1 highlighted in green in

FIGURE 5 Integration intervals, areas and volumes in A, first,
B, second, and C, third order average Hamiltonian theory of a
Hamiltonian that is piecewise time-independent
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Reinforcement learning for Hamiltonian engineering

From Sutton & Barto 2018.

I State → propagator
I Action → control pulses

I Reward → propagator fidelity
(

Re Tr
(

U†
targetU(t)

)
Tr(1)

)
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Constructing pulse sequences using AlphaZero

Implemented AlphaZero algorithm (Silver et al. 2018, originally for
Chess, Shogi, and Go), though there are many different RL
approaches (Peng et al. 2021, P33.00001).
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Computational results

Goal: decouple all interactions (H = 0) in strongly coupled spin
systems with experimental imperfections.

under-rotated

over-rotated

I Unconstrained search (tabula rasa, no AHT knowledge), 1%
pulse rotation error, different pulse sequence lengths
(12τ, 24τ, 36τ, 48τ)

I AHT-constrained search, 1% pulse rotation error, 48τ
sequence length
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Fidelity vs. pulse sequence length
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Robustness to pulse rotation error: AHT constraints
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Robustness to phase transient error
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Fidelity vs. tau spacing
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Experimental results
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Summary

I Decoupling dipolar interactions is important for narrowing
linewidths, increasing coherence times

I RL is promising new tool to design new pulse sequences
I Tailored control for specific system characteristics and errors
I Best-performing approach likely is a mix of RL and knowledge

from AHT

Thanks for listening!
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Quantum control in spin systems

H(t) = Hsys + Hctrl(t)

Can use Hctrl(t) to achieve a unitary transformation U given by an
effective Hamiltonian Heff.

Hsystem =
∑

i δi I i
z +

∑
i ,j d ij

(
3I i

z I j
z − Ii · Ij

)
= HCS + HD

d12 d23

d13δ1

δ2

δ3
Hcontrol(t)
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Quantum control in spin systems

Hsys =
∑

i
δi I i

z +
∑
i ,j

dij
(

3I i
z I j

z − Ii · Ij
)

= HCS + HD

Hctrl(t) = −B1(t)
∑

i
γ i

nI i
x − B2(t)

∑
i
γ i

nI i
y
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Average Hamiltonian Theory (AHT)

The time-evolution operator (or propagator) follows the differential
equation

i d
dt U(t) = H(t)U(t)

U(0) = 1

The Magnus Expansion gives an exponential solution for the
propagator via an average Hamiltonian H at time t

U(t) = exp
(
−iHt

)
with H = H0 + H1 + . . ..
The series converges rapidly when t||H|| � 1.



21

AHT (cont.)

We often work in the interaction frame of the control Hamiltonian,
with transformation operator

d
dt Uctrl(t) = −iHctrl(t)Uctrl(t)

Uctrl(0) = 1

So the Hamiltonian in the interaction frame becomes

H̃(t) = H̃sys(t) = Uctrl(t)†HsysUctrl(t)

Brinkmann 2016.
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AHT: Pulse sequences

If a pulse sequence is both cyclic and periodic Gerstein &
Dybowski 1985

Uctrl(tc) = T exp
(
−i
∫ tc

0
Hctrl(t)dt

)
= ±1 (cyclic)

Hctrl(t) = Hctrl(t + Ntc) (periodic)

then the interaction frame and the lab frame coincide at multiples
of the cycle time, and the propagator can be given by

U(tc) = exp
(
−itc(H(0) + H(1) + . . . )

)
Higher-order terms for average Hamiltonian become nasty. . .
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AHT: Special Cases

I Symmetric pulse sequences (H(τ) = H(tc − τ)): all odd-order
terms in average Hamiltonian are zero

I Antisymmetric pulse sequences (H(τ) = −H(tc − τ)): all
terms in average Hamiltonian are zero
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Simulation/RL parameters
I N = 3 spin-1/2 system, δi ∼ N (0, 1), dij ∼ N (0, 100)
I Delay τ = 10−4, pulse length tp = 10−5

I Ensemble of 50 spin systems with different chemical shifts and
dipolar interactions

I Replay buffer size: 106 “experiences” ((s, a, r))
I Batch size: 2048
I Training duration: 104 training steps

fidelity(U,Utarget) = Re
Tr
(
U†targetU(t)

)
Tr (1)

For RL algorithm performance, use log infidelity as “reward”

r = − log (1− fidelity)

r = 4 ⇐⇒ fidelity = 0.9999
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Computational results: AlphaZero algorithm learns



26

Robustness to errors: unconstrained search
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Comparison between RL approaches

Different RL algorithm used by our collaborators (Peng et al.
2021).

Characteristic Evolutionary Reinforcement Learning AlphaZero
State represen-
tation

Sequence of previous pulses Same

Action space Delay or π/2-pulse along ±X, ±Y Same
Learning
method

Evolutionary algorithms (gradient-free) Tree search and
experience replay
(gradient based)

Prior knowledge Builds longer sequences from shorter
ones

Uses AHT to prune
tree search

Pulse sequences
(Heff = 0)

yxx48 az48
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Neural network structure

x0

x1

GRU

GRU
...
xk GRU relu

64 32

fc relu

fc relu fc

relu

relu

fc relu fc

fcrelufcrelufc

relu

policy

fc

relu

fc

relu

value

input

output

GRU = gated recurrent unit
relu = residual activation layer
fc = fully connected layer
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AlphaZero algorithm

Explore new pulse sequences
1. Start with a zero-length pulse sequence as the root node
2. With the given root node, perform Monte Carlo Tree Search

(MCTS) to explore potential pulses
MCTS uses a neural network to estimate the prior
probabilities for selecting each pulse and the value (fidelity)
for the final pulse sequence

3. Sample the next pulse from the root node’s children weighted
by their visit counts

4. Repeat steps 2-4 until a complete pulse sequence is
determined

5. Record the child nodes’ visit counts and final pulse sequence
fidelity to a data buffer for training

Parameters for MCTS, training, etc.
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AlphaZero algorithm (cont.)

Train neural networks on collected data
I Policy loss: want to minimize the difference between MCTS

visit counts p and learned policy πθ
I Value loss: want to minimize the difference between

calculated fidelity from pulse sequence z and predicted fidelity
from neural network v

I L2 regularization: prevent overfitting to data
I l(θ) = −p · log πθ + (z − v)2 + c||θ||2
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Neural network training
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Training performance
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Pulse sequences identified using AlphaZero

az48 pulse sequence (decouple all interactions):
−X , τ,Y , τ,Y , τ,X , τ,Y , τ,Y , τ
−Y , τ,X , τ,X , τ,−Y , τ,X , τ,X , τ
Y , τ,X , τ,X , τ,−Y , τ,X , τ,X , τ
−Y , τ,X , τ,−Y , τ,X , τ,X , τ,−Y , τ
−X , τ,−X , τ,Y , τ,Y , τ,−X , τ,Y , τ
Y , τ,−Y , τ,X , τ,−Y , τ,−Y , τ,X , τ
−Y , τ,X , τ,X , τ,−Y , τ,X , τ,X , τ
−Y , τ,−X , τ,−X , τ,−Y , τ,−X , τ,−X , τ
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RL advantages and disadvantages

I Generalized approach to learning problem: no assumed prior
knowledge

I Can tailor problem to specific system of interest (e.g. strongly
coupled system, timing precision constraints)

I Robustness against known errors by including them in
simulation of spin system

I Computationally expensive
I Poor accuracy of many-body spin simulations
I No guarantees for convergence to optimal (or good) solution
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