
Applying Reinforcement Learning to

Hamiltonian Engineering

1





APPLYING REINFORCEMENT LEARNING TO HAMILTONIAN ENGINEERING

A Thesis

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Bachelor of Arts

in

Physics

by

Will Kaufman

DARTMOUTH COLLEGE

Hanover, New Hampshire

May 20, 2021

Examining Committee:

Chandrasekhar Ramanathan, Chair

Lorenza Viola

Bo Zhu





Abstract

Hamiltonian engineering encompasses a variety of important problems in quantum

physics and quantum control. For solid state spin systems in particular, the ability to engi-

neer an effective Hamiltonian to decouple dipolar interactions is desirable for improving

spectroscopy and increasing spin coherence times. Average Hamiltonian theory (AHT)

has been used to design pulse sequences for Hamiltonian engineering, but the compu-

tational complexity of calculating higher-order terms inherently limits its performance.

This work explores reinforcement learning as an alternative approach to designing pulse

sequences for Hamiltonian engineering. The AlphaZero algorithm was trained to con-

struct pulse sequences of varying lengths to decouple all interactions in spin systems.

High-fidelity pulse sequences were identified after introducing additional constraints to

the algorithm’s tree search, and were trained to be robust to multiple sources of error by

including those errors in training. The RL-based pulse sequences have lower fidelity than

the CORY48 pulse sequence (a state-of-the-art AHT-based pulse sequence) both in com-

putational simulations and experiment, indicating that the current RL implementation

does not outperform existing approaches using AHT.
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Chapter 1

Background

Some physicists believe that quantum physics is on the cusp of a “second quantum

revolution” (NIST (2018)). The ability to probe quantum systems with finer precision and

control them to a greater extent, as opposed to passively observing emergent phenomena

that arise, has the potential to radically transform many different areas, from sensing to

simulation to quantum computation.

Hamiltonian engineering is an important problem in the effort to more finely control

quantum systems. Every system has a Hamiltonian that characterizes its dynamics, and

as the name suggests, Hamiltonian engineering seeks to “engineer” a different Hamil-

tonian so that the system’s dynamics are altered. This has been applied to NMR spec-

troscopy by engineering Hamiltonians to remove interactions that cause noisier measure-

ments. Engineering Hamiltonians can also be used for sensing (where certain interactions

are sensitive to external fields while being robust to decoherence) and for quantum sim-

ulation (where novel Hamiltonians must be implemented in existing systems).

Two specific examples where Hamiltonian engineering can be readily applied include

NMR spectroscopy and spin bath engineering. For example, in NMR spectroscopy of

organic solids, the collective magnetization of spin-1/2 protons in a sample can be mea-

sured, and the resulting signal informs the particular chemical environments in which
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1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

the spins exist. However, for solid-state samples, magnetic dipolar interactions between

spins lead to signal decay, inhibiting our ability to learn about the chemical environ-

ments. However, various methods have been developed to effectively decouple the mag-

netic dipolar interactions between spins, improving the signal drastically.

Magnetic dipole interactions between a central spin and many surrounding bath spins

(such as an NV center surrounded by many P1 centers) also lead to unwanted effects, in

this case a decay of the central spin coherence time. Long coherence times for the system

of interest are desirable, and finding ways to decouple interactions between the central

spin and bath spins would help that endeavor.

1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

A spin-1/2 particle (such as an electron or proton) has two possible values for its

intrinsic angular momentum or “spin,” so the corresponding Hilbert Space for a single

spin-1/2 particle has dimension two. Ix, Iy and Iz denote the operators for nuclear spin

angular momentum about x, y, and z, respectively. When placed in a magnetic field, the

magnetic dipole moment (which is proportional to spin) will interact with the field and

the spin will begin to precess. For a collection of N spin-1/2 particles, the corresponding

Hilbert Space has dimension 2N . For an ensemble of spins, the term I
(j)
z is shorthand for

a tensor product of operators, all identity except for the jth operator

I(j)z = 1⊗ 1⊗ · · · ⊗ Iz ⊗ · · · ⊗ 1 (1.1)

Similarly, the term I
(j)
z I

(k)
z is shorthand for a product of identity operators except for the

jth and kth operators.

Nuclear magnetic resonance (NMR) encompasses the study of nuclear spins and the

various interactions they have with external fields and with each other. The key interac-

tions considered in this work are given below in equations 1.2 through 1.7, but a complete

2



1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

description of the interactions present in NMR can be found in Haeberlen (1976).1 Fig-

ure 1.1 graphically depicts a spin system in a lattice and the dipolar interactions between

spins.

d67

d47

d12
δ2

δ3

δ1

δ4

δ6

δ7

δ5

δ8

B0

Figure 1.1: A system of spins in a cubic lattice. Each spin may have a different local mag-
netic field due to its surrounding electronic structure, which causes the chemical shifts
δi away from the Larmor frequency ω0. Dipolar interactions between pairs of spins are
shown in red arrows, and only shown for a few pairs of spins. The mainB0 field is present
everywhere in the lattice.

The system Hamiltonian can be decomposed into several parts, as shown in equa-

tions 1.2 to 1.5.

Hsys = HZ +HCS +HD (1.2)

HZ = ω0

∑
j

I(j)z (Zeeman) (1.3)

HCS =
∑
j

δiI
(j)
z (chemical shift) (1.4)

HD =
∑
j,k

djk
(
3I(j)z I(k)z − I(j) · I(k)

)
(dipolar) (1.5)

The chemical shift and dipolar terms are collectively called the internal Hamiltonian

Hint = HCS +HD (1.6)
1The quadrupolar interaction and J coupling are not considered here, but it’s good to remember they’re

still there in general.
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1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

because those interactions are internal to the sample.

The Zeeman interaction HZ captures the coupling of spins to the main external mag-

netic field along the z-axis. The oscillation frequency associated with the Zeeman inter-

action is called the Larmor frequency ω0 = γiB0, and only differs between spins if the

gyromagnetic ratio differs (e.g. between H1 and C13). We assume going forward that all

spins are of the same species.2 The chemical shift interaction HCS captures the local mag-

netic field differences for each spin due to the electronic structure surrounding the spin.

The dipolar interaction between spins is represented by HD.

In addition, the system can also be externally manipulated by an additional control

term, so that the total Hamiltonian H(t) = Hsys + Hctrl(t). The control term, commonly

written in NMR as Hrf(t), is the interaction between the spins and a time-varying trans-

verse magnetic field along the x-axis.3 In the lab frame, the rf term is given by equa-

tion 1.7.

Hrf(t) = u(t)ω1

∑
j

I(j)x (1.7)

where u ∈ [−1, 1] parameterizes the strength of the B1 field.

In an NMR spectrometer, a sample is placed into an external magnetic field B0 (defin-

ing the principal axis or z-axis). The spins in the sample reach thermal equilibrium and

are characterized by the density operator

ρth =
exp{−βHint}

Z
(1.8)

where Z is the partition function Z = Tr{exp{−βHint}}. The dominant term in the inter-

2The external magnetic field B0 varies slightly from spin to spin due to experimental imperfections, but
those field inhomogeneities are ignored.

3The reason it is labeled as Hrf is because the field’s oscillation frequency is matched to the Larmor
frequency ω0 which is in the radiofrequency range.
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1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

nal Hamiltonian is HZ , so the first-order approximation for ρth is given by

ρth ≈ 1− δ
∑
j

I(j)z (1.9)

The identity term does not contribute to the system’s dynamics (U1U † = 1) so the collec-

tive spin term
∑

j I
(j)
z is the lowest-order term that captures the dynamics and measure-

ment outcomes in the spin system. The collective spin determines the net magnetization

of the sample, so the thermal equilibrium state corresponds to initial net magnetization

along z.

The Zeeman term dominates the system Hamiltonian (and the dynamics it generates

are not very interesting), so it is oftentimes useful to work in the interaction frame of the

Zeeman term, also known as the “rotating frame.” The rotating frame transformation

operator is given by

UZ(t) = exp

(
−iω0t

∑
j

I(j)z

)
(1.10)

which corresponds to rotation about the z-axis with angular velocity ω0.4 The interaction

frame Hamiltonian is then given by

H(R)(t) = UZ(t)† [HCS +HD +Hrf(t)]UZ(t)

= HCS +HD +H
(R)
rf (t)

(1.11)

Both HCS and HD commute with HZ and therefore commute with UZ(t). The rf field

Hrf(t) does not commute with HZ ([Ix, Iz] 6= 0), so we need to consider how the rf field

interaction transforms in the rotating frame.

If the transverse magnetic field oscillates at the Larmor frequency of the spins with

phase offset φ

u(t) = cos(ω0t+ φ) (1.12)

4Refer to the appendix for additional information on interaction frames.
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1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

then this field can be thought of as two counter-rotating magnetic fields whose net effect

is the transverse field B1(t)

B1(t) =
1

2
[B1(cos(ω0t+ φ)x̂ + sin(ω0t+ φ)ŷ) +B1(cos(ω0t+ φ)x̂− sin(ω0t+ φ)ŷ)] (1.13)

In a frame rotating about the z-axis with frequency ω0, it looks like there is a fixed mag-

netic field from one of the rotating fields and a counter-rotating field with frequency 2ω0.

If we ignore the high-frequency field (i.e. the rotating wave approximation), the spins in

the rotating frame see a fixed magnetic field at an azimuthal angle φ in the xy-plane, and

begin to precess about the new field. In the rotating frame, the rf Hamiltonian effectively

becomes

H
(R)
rf (t) = u1(t)ω1

∑
j

I(j)x + u2(t)ω1

∑
j

I(j)y (1.14)

This rf field in the rotating frame can therefore rotate the spins about the x or the y axis

by controlling u1 and u2 respectively. By applying this transverse B1 field for a specific

duration t with phase φ, the system in the rotating frame is transformed according to the

unitary operator

U = exp{−iω1t(cos(φ)Ix + sin(φ)Iy)} (1.15)

In particular, if t = π
2ω1

, the spins can be rotated from the initial equilibrium state to a

state with net magnetization in the xy-plane. This is called a π/2-pulse (because it rotates

the spins π/2 radians or 90◦). Increasing the strength of the B1 field or the duration of

the pulse increases the rotation angle, and adjusting the phase of the pulse adjusts the

rotation axis. From this point forward, we will work in the rotating frame unless oth-

erwise specified, which amounts to neglecting HZ in the system Hamiltonian and using

equation 1.14 instead of 1.7 for Hrf.

In NMR experiments, the general procedure is the following:

1. Place the sample in the main magnetic field and wait for the sample to reach thermal

6



1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

equilibrium ρth (equation 1.8). The net magnetization of the sample is along the z

axis.

2. Apply a π/2-pulse to rotate the spins and the net magnetization vector into the xy-

plane.

3. Apply a pulse sequence repeatedly so the system evolves under an engineered

Hamiltonian. The density operator then evolves according to the propagator U de-

termined by the pulse sequence, so at multiples of the cycle time T of the pulse

sequence the density operator is given by

ρ(NT ) = UNρthU
†N (1.16)

4. Measure the oscillating induced emf due to the precessing spins. This measurement

corresponds to the complex signal given by

〈I+(t)〉 = 〈Ix(t)〉+ i〈Iy(t)〉

= Tr(Ixρ(t)) + iTr(Iyρ(t))

(1.17)

The Fourier transform of the signal gives a spectrum of the sample, including chemical

shift frequencies δi of different spin species. There are many other variations on NMR

experiments, but that is the basic methodology. See figure 1.2 for a diagram showing a

typical NMR experiment, including the “pulse train” that is applied to the system.

t

Xπ/2

sample

thermalizes

n

measure

magnetization

Figure 1.2: A typical NMR experiment, including initializing the state, a π/2-pulse to
measure magnetization in the xy-plane, and many repetitions of a pulse sequence and
magnetization measurements. After each pulse sequence (between the brackets), the dy-
namics appear to have evolved due to an engineered Hamiltonian.
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1.1 Spin-1/2 Systems and Nuclear Magnetic Resonance

If the NMR sample is a liquid, then the sample’s molecules are constantly tumbling

past each other. As a result, dipolar interactions between spins from different molecules

are not constant over the course of the experiment, and in aggregate the dipolar interac-

tions are averaged to zero. This is called “motional averaging” of the dipolar interactions

Hint = HCS +HD −→ HCS

The chemical shifts for each spin do stay constant (because the local magnetic field due to

molecular structure stays the same), so the resulting spectrum clearly resolves chemical

shift peaks. Recall that HZ is not present in the rotating frame.

In contrast, motional averaging does not occur in solid-state NMR. Because the spins

are in fixed positions relative to other spins in the sample, dipolar interactions affect the

net magnetization of the sample and lead to a broadening of the peaks in the spectrum.

This line-broadening inhibits accurate measurements of chemical shifts in solid samples.

See figure 1.3 for a comparison of spectra between liquid- and solid-state NMR.

Figure 1.3: NMR spectra for a solid sample, solid sample with magic-angle spinning, and
liquid sample. The goal of NMR spectroscopy is to decouple dipolar interactions (top)
so that the peaks can be clearly resolved (bottom). Magic angle spinning (MAS) is one
technique for narrowing linewidths in solid samples. From Facey (2008).
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1.2 Hamiltonian Engineering

1.2 Hamiltonian Engineering

Hamiltonian engineering is an important problem within the broader field of quan-

tum control. The goal of Hamiltonian engineering is to choose parameters for the control

Hamiltonian so that, when measured stroboscopically5, the system appears to evolve un-

der a target effective Hamiltonian Htarget instead of the system Hamiltonian Hsys. In most

cases the target Hamiltonian is time-independent.

If we are able to engineer an effective Hamiltonian, then we have also created a unitary

transformation U(T ) = exp
{
−iHtargetT

}
. Conversely, if we have implemented a unitary

transformation U(T ), then there exists an effective time-independent Hamiltonian that

characterizes the dynamics over time T (note that this Hamiltonian is not unique).

1.2.1 Average Hamiltonian Theory

Average Hamiltonian theory (AHT) provides a framework with which the Hamilto-

nian engineering problem can be approached. The following presentation of AHT is in-

spired by Brinkmann (2016); Gerstein and Dybowski (1985); Haeberlen (1976).

For a particular Hamiltonian H(t), the propagator U(t) is defined by equation 5.3

i
dU(t)

dt
= H(t)U(t), U(0) = 1 (1.18)

As the name suggests, average Hamiltonian theory lets us express the propagator U(t) at

each time t in terms of an average time-independent Hamiltonian H

U(t) = exp
{
−iH(t)t

}
(1.19)

The above equation seems to suggest that H(t) is not time-independent–it is explicitly

dependent on time! It is true that H(t) itself is not time-independent, but given a time T ,

5Stroboscopically means measured at regular intervals 0, T, 2T, . . . .

9



1.2 Hamiltonian Engineering

we can findH(T ) so that the propagator U(T ) can be expressed as though the Hamiltonian

were H(T ) for the time interval t ∈ [0, T ].

How then do we determine the average Hamiltonian? One approach is to use the

Magnus Expansion (Blanes et al. (2009); Blanes et al. (2010)). The Magnus Expansion

begins with the ansatz that an exponential solution for the propagator exists

U(t) = exp{Ω(t)},Ω(0) = 0 (1.20)

and proceeds by finding a series expansion for Ω(t)

Ω(t) =
∑
k

Ωk(t) (1.21)

The first few terms are presented below

Ω1(t) = −i
∫ t

0

dt1H(t1) (1.22)

Ω2(t) = −1

2

∫ t

0

dt1

∫ t1

0

dt2[H(t1), H(t2)] (1.23)

...

Derivations of the Magnus Expansion can be found in Gerstein and Dybowski (1985);

Blanes et al. (2009); Blanes et al. (2010).

From Ω(t), an expression for the average Hamiltonian can be derived by making the

comparison

Ω(t) = −iH(t)t =⇒ H(t) =
i

t
Ω(t) (1.24)

This then gives us a series expansion for the average Hamiltonian H(t) =
∑

kH
(k)

(t),

10



1.2 Hamiltonian Engineering

with the first few terms given below.

H
(0)

=
1

t

∫ t

0

dt1H(t1) (1.25)

H
(1)

=
1

2it

∫ t

0

dt1

∫ t1

0

dt2 [H(t1), H(t2)] (1.26)

H
(2)

= − 1

6t

∫ t

0

dt1

∫ t1

0

dt2

∫ t2

0

dt3 {[H(t1), [H(t2), H(t3)]] (1.27)

+ [[H(t1), H(t2)] , H(t3)]}

Although there appears to be a simple pattern to the terms, this is not the case. Higher-

order terms can be determined through a recursive relationship or through particularly

complicated explicit forms.

The Magnus Expansion converges when

∫ t

0

dt1||H(t)||2 � 1 (1.28)

which effectively requires that we consider timescales much smaller than the natural

timescale of the Hamiltonian.6 This is also written more succinctly as ||H||t� 1.

Because convergence requires the norm of the Hamiltonian to be small, there are cases

when working in the interaction frame of a strong interaction is desirable. In NMR, going

from the rotating frame (of the Zeeman interaction) to the interaction frame of the rf field

removes the strong Hrf term from the nuclear spin Hamiltonian. This interaction frame is

commonly called the “toggling frame.”

H(t) = Hint +Hrf(t) =⇒ H̃(t) = H̃int(t) (1.29)

In the toggling frame, the Magnus Expansion can again be used to determine the average

Hamiltonian H̃(t), but using H̃int(t) in place of H(t) in equation 1.25. The upshot is that

6A much more detailed overview regarding convergence can be found in Blanes et al. (2009).

11



1.2 Hamiltonian Engineering

by going into the toggling frame, the smaller-norm average Hamiltonian converges for

longer time values.

At this point, the identification of an “average Hamiltonian” is of little benefit: H(t)

might be different at different times, and it may be the average Hamiltonian in the toggling

frame instead of the lab frame. To address these concerns, we can require that Hrf(t) be

“cyclic” and “periodic.” For a fixed time T > 0,

Urf(T ) = 1 (cyclic) (1.30)

Hrf(t+NT ) = Hrf(t), N ∈ Z (periodic) (1.31)

T is called the “cycle time” and should be short enough so that the Magnus Expansion

converges. The cyclic and periodic properties ensure that the average Hamiltonian is the

same and that the toggling frame coincides with the rotating frame at multiples of the

cycle time NT .

The AHT framework permits continuous control via the rf field, but we will focus on

discrete control, where a finite set of rf field pulses can be applied at multiples of time τ .

The set of pulses we will consider are π/2-pulses about the x- or y-axis, which we will

label as {X, Y,X, Y } where the bar denotes a −π/2 rotation. An X pulse corresponds to

the unitary operator

UX = exp

{
−i

[
π/2

(∑
j

I(j)x

)
+Hinttp

]}
(1.32)

where tp is the pulse duration. Pulses along the y-axis swap the Ix operator with Iy, and

reverse rotations negate the π/2 term. In the delta-pulse limit (i.e. tp = 0), an X pulse

corresponds to the unitary operator UX = exp{−iπ/2
∑

j I
(j)
x } and a Y pulse similarly

corresponds to UY = exp{−iπ/2
∑

j I
(j)
y }.

12



1.2 Hamiltonian Engineering

1.2.2 WAHUHA-4 Pulse Sequence

One of the first pulse sequences developed for Hamiltonian engineering in NMR was

the WAHUHA-4 pulse sequence (WHH-4) from Waugh et al. (1968). The pulse sequence

is defined as

τ,X, τ, Y , τ, τ, Y, τ,X, τ (1.33)

where the sequence should be read from left to right (an X pulse is applied first). The

pulse sequence is also shown in figure 1.4.

t

X Y Y X

τ τ 2τ τ τ

n

Figure 1.4: The WHH-4 sequence repeated n times in a pulse train. If the magnetization of
the sample is measured after each WHH-4 sequence, the dynamics will appear to evolve
according to the average Hamiltonian given below.

The propagator for a single cycle of the WHH-4 sequence is

UWHH-4 = exp{−iHintτ}UX exp{−iHintτ}UY exp{−iHint2τ}UY exp{−iHintτ}UX exp{−iHintτ}

(1.34)

Now, using AHT, we express UWHH-4 = exp{−iHWHH-46τ} and find an approximation

for the average Hamiltonian HWHH-4. The toggling frame propagator as well as the tog-

gled I(j)z and I(j)z I
(k)
z terms are determined by the four pulses in the sequence. For t ∈ [0, τ ],

the toggling frame corresponds to the lab frame. But after the X pulse, the toggling frame

propagator is now UX , so the toggled spin terms are Ĩz
(j)

= U †XI
(j)
z UX = I

(j)
y

7 The toggling

frame and corresponding terms for each time interval are given in table 1.1.

7This can be seen by noting that exp{−iθIx} = exp{−iθ/2σx} = cos(θ/2)1− i sin(θ/2)σx, then using the
commutation relations for Pauli matrices to simplify. As a rule of thumb, UX rotates the lab frame’s y-axis
into the z-axis so that Ĩz = Iy , and UY rotates z into y.

13



1.2 Hamiltonian Engineering

Table 1.1: The WHH-4 toggling frame propagator and toggled terms at different time
intervals.

Time interval Toggling frame propagator Urf Ĩz Ĩz
(j)
Ĩz

(k)

[0, τ ] 1 Iz I
(j)
z I

(k)
z

[τ, 2τ ] UX Iy I
(j)
y I

(k)
y

[2τ, 4τ ] UYUX Ix I
(j)
x I

(k)
x

[4τ, 5τ ] UX Iy I
(j)
y I

(k)
y

[5τ, 6τ ] 1 Iz I
(j)
z I

(k)
z

Note that in the dipolar interaction HD, the isotropic term I(j) · I(k) is invariant under

rotations and therefore not transformed by the toggling frame.

We see that WHH-4 is cyclic because Urf(6τ) = 1, and the applying the WHH-4 se-

quence repeatedly would satisfy the periodic requirement. To determine the lowest-order

term in the Magnus Expansion H
(0)

, we use the toggled terms from table 1.1 in equa-

tion 1.25.

H
(0)

=
1

6τ

∫ 6τ

0

dt1H̃int(t1)

=
1

6τ

[∑
j

δj
(
2τI(j)z + 2τI(j)y + 2τI(j)x

)
+

∑
jk

djk
(
3(2τI(j)z I(k)z + 2τI(j)y I(k)y + 2τI(j)x I(k)x )− 6τI(j) · I(k)

)]

=

[
1/3

∑
j

δj
(
I(j)z + I(j)y + I(j)x

)
+
∑
jk

djk
(
I(j)z I(k)z + I(j)y I(k)y + I(j)x I(k)x − I(j) · I(k)

)]

= 1/3
∑
j

δj
(
I(j)z + I(j)y + I(j)x

)
The WHH-4 sequence, to lowest order, refocuses or “cancels out” the dipolar interaction

between spins while retaining the chemical shift term. Instead of the principal axis being

along z, however, the spin operator acts along the diagonal axis (1, 1, 1).

14



1.2 Hamiltonian Engineering

1.2.3 CORY-48 Pulse Sequence

AHT can be taken even further than the WHH-4 sequence by considering higher-

order terms in the Magnus Expansion. The CORY48 sequence is a 72τ , 48-pulse sequence

that was designed to decouple all interactions so that Htarget = 0 (Cory et al. (1990)).

Furthermore, the CORY48 sequence decouples the dipolar interactions to second order,

and is robust to errors including pulse rotation errors and resonance offset errors. The

full sequence is presented in equation 1.35.

X, τ, Y, 2τ,X, τ, Y, 2τ,X, τ, Y, 2τ,X, τ, Y, 2τ,X, τ, Y , 2τ,X, τ, Y, 2τ

Y , τ,X, 2τ, Y, τ,X, 2τ, Y , τ,X, 2τ, Y , τ,X, 2τ, Y , τ,X, 2τ, Y , τ,X, 2τ

X, τ, Y, 2τ,X, τ, Y , 2τ,X, τ, Y, 2τ,X, τ, Y , 2τ,X, τ, Y , 2τ,X, τ, Y , 2τ

Y, τ,X, 2τ, Y, τ,X, 2τ, Y, τ,X, 2τ, Y , τ,X, 2τ, Y, τ,X, 2τ, Y , τ,X, 2τ

(1.35)

The full AHT analysis is not presented here, but one can imagine evaluating the three

lowest-order terms from equations 1.25 to 1.27 using each of the 48 time intervals. The

lowest-order term is not difficult to calculate, but the higher-order terms quickly become

intractable as the integrals include more and more nested commutators.

The free evolution of a spin system under Hint can be compared to the engineered

Hamiltonians from the WHH-4 and CORY48 sequences by running three sets of exper-

iments. The state is initialized to ρth, rotated by a π/2-pulse so the net magnetization is

along x, and propagated using one of the pulse sequences (i.e. no pulse sequence for free

evolution, the WHH-4 sequence, and the CORY48 sequence). Measuring the net magneti-

zation along x gives the correlation function CXX(t) (initialize state along x and measure

signal along x). Similarly, CY Y can be measured by initializing the state along y and mea-

suring along y. If the engineered Hamiltonian is close to zero, the correlation functions

decay slowly.

By comparing the average correlation (Cavg = (CXXCY YCZZ)1/3) for free evolution
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1.2 Hamiltonian Engineering

(FID), the WHH-4 sequence, and the CORY48 sequence in adamantane, it is clear that

the longer CORY48 sequence outperforms the shorter WHH-4 sequence in decoupling

interactions and extending the coherence time (see figure 1.5).

10 2 10 1 100 101 102 103

Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C a
vg

Adamantane
FID
WHH4
cory48
T1

Figure 1.5: The average correlation for a free induction decay (FID), the WHH-4 sequence,
and the CORY48 sequence in an adamantane sample. Both the WHH-4 and the CORY48
extend the coherence times of the sample, but CORY48 achieves nearly two orders of
magnitude greater improvement. The T1 time for adamantane is shown at t = 1s.

However, AHT may not be a suitable framework with which to develop pulse se-

quences that improve upon CORY48. The computational resources required to decouple

interactions to higher orders would be significant.

Are there other methods for Hamiltonian engineering that can achieve higher-fidelity

control in spin systems? This thesis seeks to answer that question by exploring reinforce-

ment learning.
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Chapter 2

Reinforcement Learning

Reinforcement learning is learning what to do–how to map situations to actions–

so as to maximize a numerical reward signal. (Sutton and Barto (2018))

Reinforcement learning (RL) has been applied to a variety of different problems, includ-

ing interacting with physical environments such as robotic manipulation using visual

input (Lillicrap et al. (2015)) or playing chess (Silver et al. (2018)). A significant attraction

of RL is its generality: any problem that can be formulated as a Markov decision process

(MDP) can be approached with RL, and in most cases no prior knowledge of the problem

is assumed. Hamiltonian engineering fits into the RL paradigm by considering discrete

time steps at which the control Hamiltonian can be set. The environment is the quantum

system we are trying to control, the actions are control Hamiltonian parameters at a given

time step, and the reward is how “close” the dynamics are to the desired dynamics under

the target Hamiltonian. Each of these are developed in more detail in section 3.2.

In the language of RL, an agent is responsible for performing actions on the environment

to maximize a reward signal (or reward). The agent can see the state of the environment

which informs what actions to take. See figure 2.1 for a diagram of the agent-environment

interactions. In turn, the agent’s actions affect the environment’s state. The agent must

then balance exploration of the environment for learning about novel, possibly better
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Reinforcement Learning

policies, with exploitation of its prior knowledge to maximize rewards.1

Figure 2.1: The general reinforcement learning paradigm. From Sutton and Barto (2018).

The agent interacts with the environment in a series of timesteps. Each timestep be-

gins with a state si, the agent chooses an action ai based on the state, and optionally

receives a reward ri for the particular state-action combination. An episode is a collection

of timesteps that begin in an initial state and end in a terminal state. For Hamiltonian

engineering, an episode is the complete construction of a pulse sequence, where each

timestep selects the next pulse depending on the sequence of previous pulses.

The agent decides what actions to perform at each timestep using a policy function

π, which maps each state s ∈ S to either a probability distribution over the action space

P(A) (a “stochastic policy”) or simply a particular action a ∈ A (a “deterministic policy”).

Policy functions can be implemented as a dictionary of state-action pairs when the state

space is small, or as neural networks which are optimized using gradient-based methods.

The return at timestep t is defined as

Gt :=
T∑
k=t

γk−tRk, γ ∈ [0, 1) (2.1)

or the total discounted rewards until the end of the episode at timestep T . If the episode

has a finite number of timesteps the discount factor is often ignored. The state-value func-

tion (or value function) is the expected return from a particular state while following a

1For a more detailed description of the RL framework, see Sutton and Barto (2018).
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policy π

vπ(s) := E[Gt|St = s] (2.2)

If there is only a reward at the end of the episode (as is the case with pulse sequence

design), then the value function gives the expected final reward at the end of the episode.

2.0.1 Algorithm Examples

There are many RL algorithms that have been developed, tailored to different char-

acteristics of the RL problem. The RL algorithms can be differentiated according to the

following characteristics.

Model An agent in a model-free RL algorithm learns a policy directly from observations of

the environment. An agent in a model-based RL algorithm instead uses observations

to model the environment, then uses that model to learn a policy. For example,

an agent that plays chess could use a model of the game to model possible future

moves by their opponent.

Policy An on-policy algorithm learns the policy that is used to interact with the environ-

ment. An off-policy algorithm has separate policies for learning and environment

interaction.

Action space As mentioned before, an action space can be discrete (finitely many actions)

or continuous (infinitely many actions).

Learning method There are general classes of RL algorithms that learn from the agent-

environment interactions in different ways. Examples include temporal-difference

(TD) learning and policy gradient methods.

More information on RL can be found in Sutton and Barto (2018).

The RL algorithms listed below were each tested as potential options for Hamiltonian

engineering. Ultimately, the AlphaZero algorithm was used as the primary RL algorithm
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in this work as it was the best-performing of those that were tested. A more complete

description of the algorithm can be found in section 3.2.

Q-learning and DQN

Q-learning is a model-free, off-policy, temporal-difference (TD) control algorithm ap-

plicable to discrete action spaces (Watkins (1989)). As the name suggests, the action-value

function Q(s, a) is learned from experiences with the environment according to the fol-

lowing update rule

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
(2.3)

To encourage exploration of the state and action spaces, the agent typically follows an

ε-greedy policy (with probability 1 − ε perform the action that maximizes Q, otherwise

perform a random action), which makes this algorithm off-policy.

If the state and action spaces are small, then it is feasible for all the Q-values to be

stored in memory. In general, however, the action-value function is approximated using

a neural network, and the parameters are updated to minimize the loss given by 2.3. This

approach is called “deep Q-network” or DQN (Mnih et al. (2013)). DQN is suitable for

large state spaces (as demonstrated through Atari games in Mnih et al. (2013)), but still

requires the action space to be discrete.

PPO

Proximal-policy optimization (PPO) is a model-free, on-policy policy gradient algo-

rithm that improves data efficiency and robustness compared to existing algorithms (such

as DQN or other policy gradient methods) (Schulman et al. (2017)). In contrast with other

policy gradient methods, the PPO objective function is clipped according to a hyperpa-
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rameter ε.

L(θ) = Et
[
min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)

]
(2.4)

where rt(θ) = πθ(at|st)
πθ′ (at|st)

is the probability ratio of actions under the new and old policies,

and Ât is an estimator of the advantage function at time t, or the excess return above what

was expected by the value function

Ât := Gt − vπ(St) (2.5)

By clipping the objective, the gradient updates are non-zero only for a region close to

the previous policy, thus preventing policy changes that move too far away from the old

policy. PPO has been applied successfully to both continuous and discrete action spaces.

Evolutionary Reinforcement Learning

Evolutionary reinforcement learning (ERL) is a model-free, off-policy hybrid algo-

rithm that uses both policy gradient and evolutionary algorithm methods (Khadka and

Tumer (2018)). ERL addresses problems found in many gradient-based RL algorithms, in-

cluding temporal credit assignment (associating actions to rewards that may be separated

by many time steps), exploration of the state and action spaces, and policy convergence

sensitivity to hyperparameters. To do so, ERL maintains a population of actors with in-

dividual policies that interact with the environment. The population’s experiences are

recorded in a shared replay buffer, and a separate actor/critic pair learn from the replay

buffer using policy gradient (such as DDPG or DQN). Periodically, the policy gradient-

based actor is copied into the population and evolutionary algorithms are used to iterate a

new “generation” of actors (by preferentially selecting high-performing actors). By using

both gradient-based and gradient-free methods, ERL attempts to achieve both efficiency

and policy diversity, making it a candidate for a variety of RL problems.

Pulse sequence design for Hamiltonian engineering has also been approached using
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the ERL algorithm in Peng et al. (2021), and achieved similar results to this RL implemen-

tation.

AlphaZero

AlphaZero is a model-based, off-policy, actor-critic algorithm that was originally de-

veloped to play chess, shogi, and Go (Silver et al. (2018)). There are two major compo-

nents to the algorithm: self-play and neural network training. Because AlphaZero is a

model-based algorithm, the agent is able to consider the state space without necessarily

interacting with the environment. The agent plays many episodes against itself, using a

neural network to estimate a policy π(s) and a value function vπ(s). During self-play, the

agent rolls out many possible state-action trajectories, chooses an action that maximizes

the expected reward, and collects data on the state, which actions it considered, and the

final reward at the end of the episode. The collected data in turn is used to train the policy

and value neural networks {π, vπ}.
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Chapter 3

Methods

This section describes the simulation methods and RL algorithm used in this work.

The implementation of both can be found at https://github.com/wjkaufman/rl_

pulse.

3.1 Simulated Spin Systems

Isolated spin systems composed of a small number of spins can be easily simulated on

a classical computer. Because the Hilbert space grows exponentially as the spins increase

(2N basis states for N spins and 22N matrix elements for operators), it quickly becomes

impractical to simulate large numbers of spins. To balance the need to capture dipole

interactions and to decrease simulation time, N = 3 spin-1/2 systems were used in the

reinforcement learning algorithm, and N = 4 spin-1/2 systems were used to evaluate

pulse sequences. The QuTiP Python package was used for all simulations (Johansson

et al. (2013)).

In any real physical system, system-environment interactions are present and the spin

system must be treated as open, but for simulation purposes the system is assumed to

be isolated. Consequently, the dynamics are given by unitary time-evolution operators.

In principle, simulations of open quantum systems could be used with reinforcement
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3.1 Simulated Spin Systems

learning algorithms, and may in fact lead to better control by accounting for non-unitary

system dynamics.

For each simulated N -spin system, the chemical shift strengths {δj}j and the dipolar

coupling strengths {djk}j,k are drawn from normal distributions

δj ∼ N (µ = 0, σ = 1) (3.1)

djk ∼ N (µ = 0, σ = d) (3.2)

so that the energy scale of the system is defined by the standard deviation of the chemical

shifts. The parameter d controls the regime of the spin system, where d� 1 is a “strongly

coupled” spin system and d� 1 is “weakly coupled.” We focus on strongly coupled spin

systems, and set d = 100 unless otherwise specified. With the chemical shift and dipolar

coupling strengths, the internal Hamiltonian Hint can be calculated (see equation 1.2).

Once Hint has been calculated, the free evolution propagator U(τ) := Uτ can be calcu-

lated via matrix exponentiation (see equation 5.4) and the pulse operators {UX , UX , UY , UY }

can be calculated using equation 1.32.

Because the (random) choices of chemical shift and dipolar coupling strengths affect

the dynamics of the spin system, an ensemble of spin systems was used both in the re-

inforcement learning algorithm and in evaluation of pulse sequences. Each spin sys-

tem used different random chemical shift and dipolar coupling strengths drawn from the

same distributions (i.e. the dipolar strength parameter d was the same for all systems). If

experimental imperfections were also included, then each system also used different ran-

dom errors. It was found that using ensembles of 50 spin systems reduced the variance

in fidelity enough while keeping runtimes relatively short, so the reinforcement learning

algorithm used 50 spin systems and evaluation used 100 spin systems.

To assess the performance of a pulse sequence for a Hamiltonian engineering problem,
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3.2 Reinforcement Learning Implementation

the pulse sequence propagator is compared to the target propagator given by

Utarget = exp
{
−iHtargetT

}
(3.3)

For this work, Htarget = 0, so Utarget = 1. Under ideal conditions, the two propagators

should be “close” in some way. One measure of “closeness” is the following fidelity

function for two unitary operators

fidelity(U,Utarget) =

∣∣∣∣∣Tr
{
U †Utarget

}
Tr{1}

∣∣∣∣∣ (3.4)

The fidelity approaches 1 as the unitaries get “closer” and the average Hamiltonian ap-

proaches the target Hamiltonian, and approaches 0 as the unitaries get further apart.

3.2 Reinforcement Learning Implementation

As explained previously, the reinforcement learning methodology is sufficiently gen-

eral to be applied to a wide range of problems in a variety of different ways. The specific

application of RL to the Hamiltonian engineering problem is described below.

3.2.1 Action Space and Representation

In an NMR spectrometer, the actions we can perform, or the “knobs” we can turn, are

the rf field amplitudes in equation 1.7. The spectrometer’s electronics limit the strength

and the granularity of the rf field, but this still allows for a staggeringly large continuous

action space. Instead of allowing for continuous control of the rf field1, we only consider

a finite set of pulses, each with an interval of free evolution after the pulse. The set of

pulses we use is the set of π/2 rotations about the x- or y-axis along with a “null pulse”

1Which is precisely the action space used in gradient ascent pulse engineering (GRAPE) algorithms from
Khaneja et al. (2005), although it does not use RL.
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3.2 Reinforcement Learning Implementation

or delay. The action set is represented as {D,X,X, Y, Y }.

In the physical system, the actions correspond to unitary operators that determine the

overall propagator. If the free evolution interval has length τ , then the D action corre-

sponds to propagator

D −→ Uτ = exp{−iHintτ}

And the other pulse actions have corresponding propagators

X −→ UτUX

X −→ UτUX

Y −→ UτUY

Y −→ UτUY

Where UX is defined in equation 1.32. In the simulations, τ = 10−4 and the pulse width

tp = 10−5 unless otherwise specified. These are in the short τ , short pulse width regimes

(dτ � 1, dtp � 1). See figure 3.1 for the relationship between rf field amplitudes, unitary

operators, and the actions.
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Figure 3.1: The rf field amplitudes, the unitary operators, and corresponding actions.

In principle, the actions could also be defined as pulses without a τ delay of free evo-

lution and a delay action. However, in practice this leads to worse performance: for

episodes with a fixed number of timesteps, the actions taken influence how much time

elapses in the pulse sequence. As a result, the “optimal” performance is found to mini-

mize the elapsed time by applying alternating pulses (e.g. X,X,X,X, . . . ). The unitary

operator fidelity generally improves as the time interval decreases, so this is an unhelpful

solution when pursuing high fidelity at longer time intervals.

3.2.2 State Space and Representation

The “state” can refer to the physics notion of state–such as the density operator ρ of a

quantum system–or the RL notion of state–a particular context in which the agent must

choose an action. They are closely related but not the same. The “physical” state space

is comprised of every reachable state ρ(t) of the spin system given an initial thermalized

state, the free evolution dynamics from Hint, and the control Hamiltonian given by the rf
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field Hrf. In an RL context, however, the agent does not observe the complete state of the

system at each point in time. Instead, the agent only knows the sequence of actions that

have been performed on the system and any measurements that have been made on the

system. Therefore, a more representative state space for the RL problem is all possible

sequences of actions performed on the system.2 This is more “realistic” in the sense that

the agent only knows what the experimenter would know, without getting any additional

information “for free.”

Furthermore, Hamiltonian engineering (and unitary gate engineering more generally)

should be independent of the state of the system. That is, the engineered Hamiltonian (or

gate) should have high fidelity for a complete basis of states, not for any one state in

particular. This further justifies the state representation as a sequence of actions.

3.2.3 Reward Function

As mentioned above, the fidelity function takes on values between 0 and 1, where

values close to 1 are desirable. However, a tenfold improvement in performance doesn’t

correspond to a tenfold increase in fidelity (for instance a fidelity of 0.9 compared to 0.99).

A suitable reward function is then calculated by

r = − log
(
1− fidelity(Uactual, Utarget) + ε

)
(3.5)

where ε > 0 ensures the reward isn’t infinite.

3.2.4 AlphaZero Algorithm

As mentioned in the introduction, the AlphaZero algorithm has two main compo-

nents: self-play and neural network training. The original publication and its supple-

2Making measurements on the system could also be considered an action (measurement affects the phys-
ical state), and the resulting measurement outcome could be included in the state (Porotti et al. (2019)). This
possibility, however, is not explored here.

28



3.2 Reinforcement Learning Implementation

mentary materials have a complete description of the algorithm (Silver et al. (2018)), but

pseudocode is presented below as well.

During self-play, the agent iteratively constructs a pulse sequence by performing Monte

Carlo Tree Search (MCTS) from the current state. From state si (which is represented by

the sequence of actions performed so far, si = (a0, . . . , ai)), the agent stochastically sam-

ples actions based on the prior probability from the policy π, the number of times the

agent has already “visited” that action, and the average estimated reward (or value) of

that branch of the tree. The agent is more likely to select actions that have a higher prior

probability, a lower visit count, and a higher average reward. The exact formula for selec-

tion is given in algorithm 1, and is a variant of the predictor upper confidence tree (PUCT)

algorithm from Rosin (2011).

The agent performs many rollouts of selecting actions, estimating the rewards, and

updating visit counts and reward estimates along the particular sequence of actions. Af-

ter a certain number of rollouts, the agent finally picks a particular action to perform by

sampling from the empirical distribution of visit counts. See figure 3.2 for a visual depic-
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tion of the MCTS process.

Algorithm 1: Monte Carlo Tree Search (MCTS) for selecting the next action.
Data: Current state s = (a0, . . . , ai−1), policy and value networks (π, v), number of

rollouts nroll, Dirichlet noise parameter α, noise weight w ∈ [0, 1], PUCT
parameters cbase, cinit

Result: Probabilities {pk}k of selecting action ak from state s, and randomly
sampled action a

Initialize root node associated with current state s ;
Create child nodes of the root node corresponding to each action in the action
space ;

Initialize set of statistics
{N(s, ak) = 0,W (s, ak) = 0, Q(s, ak) = 0, P (s, ak) = π(s, ak)}k for each child node
ak, where N is the visit count, W is the total value, Q is the mean value, and P is
the prior probability from the policy network π ;

Sample multivariate Dirichlet noise from Dir(α) and add it to the priors
{P (s, ak)}k ;

for nroll tree rollouts do
Set s0 ← s, i← 0 ;
while si is not a leaf node do

Select a child node of si associated with action ak by maximizing
Q(si, ak) + U(si, ak) where

U(s, a) = C(s)P (s, a)
√
N(s)/(1 +N(s, a))

And C(s) = log((1 +N(s) + cbase)/cbase) + cinit ;
Let si+1 ← si + (ak) and i← i+ 1 ;

if the leaf node sL represents a pulse sequence with the desired length then
Calculate the fidelity of the pulse sequence in spin system ensemble ;
Calculate the reward r from fidelity ;

else
Evaluate the leaf node sL using (π, v) to create child nodes of sL with
initialized statistics
{N(sL, ak) = 0,W (sL, ak) = 0, Q(sL, ak) = 0, P (sL, ak) = π(sL, ak)}k, and
an estimated reward r = v(sL) ;

For each of the nodes si visited from s0 to sL, update the visit counts
N(si, ai) = N(si, ai) + 1 and the values
W (si, ai) = W (si, ai) + r,Q(si, ai) = W (si,ai)

N(si,ai)
;

Calculate the estimated probability pk ← N(s, ak)/N(s) for each action ak ;
Randomly sample an action ak from the distribution {pk} ;
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Figure 3.2: An example Monte Carlo Tree Search (MCTS) starting with root state s = (X).
The first rollout explores the action branch D, creating each of the child nodes for D. The
next rollout instead explores Y starting from (X). The final two rollouts depicted choose
(Y ,D) and (Y ,D, Y ) from (X). The rollouts continue for a set number of rollouts, and the
next action selected from (X) is sampled proportionally according to visit counts of each
of the children nodes.

The agent will repeat the process of MCTS and action sampling until it has constructed

a pulse sequence with the desired length. The agent records search statistics from each

step of the pulse sequence construction: the state si, the empirical probability distribu-

tion of actions explored from MCTS, and the final reward r of the pulse sequence from

simulation. These statistics are then used to train the policy and value neural networks
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(π, v).

Algorithm 2: Pulse sequence construction via self-play.
Data: Pulse sequence length T

Result: Search statistics S

Initialize empty search statistics S ← {} and initial state s0 ← () ;

while Pulse sequence length is less than T do
Perform MCTS from state si to get probabilities of selecting action k ({pk}(i))

and randomly sample the next action ai ;

Append (si, {pk}(i)) to the search statistics S ;

Apply action ai, get updated state si+1 ← (a0, . . . , ai) ;

Calculate the reward r for the final pulse sequence ;

Include the reward r in each element in the search statistics S, so

S = {(si, {pk}(i), r)} ;

As the agent continually generates search statistics from self-play, the policy and value

neural networks (π, v) in turn are trained on the collected data. The loss function to train

the neural networks is

L(θ) = (ri − vθ(si))2 − πθ(si) · logpi + c||θ||2 (3.6)

The first term is the squared error of the reward estimates, the second is the cross-entropy

loss of the policy estimates, and the third is L2 regularization of the neural network pa-

rameters. The constant c controls the weight of L2 regularization (in this work c = 10−6).

The two processes of self-play and training are done simultaneously, with multiple

agent processes constructing pulse sequences and generating data that is then used to

train the policy and value networks. In turn, the updated network parameters θ are

shared with the agents.
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3.2.5 Neural Network Architecture

As in the original AlphaZero implementation, the policy and the value networks were

combined into a single neural network that maps a state s to both a probability distribu-

tion over actions π(s) and a value estimate v(s). This is written as fθ(s) = (π(s), v(s)),

where θ are the neural network parameters. This adds an additional degree of regulariza-

tion, because any parameters that are used for both the policy and value estimates must

minimize the loss for both the policy and the value estimates, preventing overfitting. The

combined network includes a shared set of layers that transform the state to an intermedi-

ate representation, and two separate sets of layers (called “heads”) that return the policy

and value estimates. See figure 5.1 for the complete neural network architecture.

The state is represented by the sequence of actions performed on the system and an

additional START “action.” Because the action space is discrete ({D,X,X, Y, Y }), each

action is represented by a one-hot vector3. For example, the START action corresponds

to the vector [1, 0, 0, 0, 0], a delay D corresponds to the vector [0, 1, 0, 0, 0, 0], and Y cor-

responds to [0, 0, 0, 0, 0, 1]. The sequence of pulses [X,Y,D] is then represented by the

2D-array

[[1, 0, 0, 0, 0, 0],

[0, 0, 0, 1, 0, 0],

[0, 0, 0, 0, 1, 0],

[0, 1, 0, 0, 0, 0]]

Because the state is represented by a sequence of actions, the size of the state depends on

the length of the pulse sequence. The policy head outputs a 1 × 5 vector of probabilities

associated with each of the possible actions. The value head outputs a single scalar for

the estimated reward of the pulse sequence so far.

3A one-hot vector has a single entry equal to one, and all other entries are zero.
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The state representation–as a sequence of actions–lends itself to using a recurrent

neural network architecture. A gated recurrent unit (GRU) was used, though a long-

short term memory (LSTM) layer performed similarly (Cho et al. (2014); Hochreiter and

Schmidhuber (1997)). Both GRUs and LSTMs are capable of mapping variable-length in-

put to a fixed-length output space, which is precisely what is needed when mapping the

actions we have performed so far to the estimated policy and value of that state.

3.3 AHT-Constrained Search

Because actions are explored and selected via tree search, additional constraints can be

added to prune branches of the tree that are unlikely to yield high rewards. This is akin

to adding “rules of the game” that determine which actions can or cannot be applied.

Thankfully, AHT gives us a straightforward constraint so that pulse sequences have the

desired lowest-order average Hamiltonian H
(0)

.

When the target Hamiltonian Htarget = 0, all interactions must be decoupled. If the

toggling frame is defined so that Ĩz(t) = Iz and Ĩz(t) = −Iz for equal durations, then

the lowest-order average I
(0)

z = 1/2(Iz − Iz) = 0. In general, any term containing Iz will

average to zero to lowest order when Ĩz is toggled for equal time along opposite axes (i.e.

equal time on +x and −x, +y and −y, and +z and −z-axes). Doing so would decouple

the chemical shift term HCS to lowest order.

We saw in section 1.2.2 that the dipolar interaction term is decoupled when I
(j)
z I

(k)
z

is toggled to I
(j)
z I

(k)
z , I

(j)
y I

(k)
y , and I

(j)
x I

(k)
x for equal times. Note that if Ĩz = −Iz, then

Ĩ
(j)
z Ĩ

(k)
z = (−I(j)z )(−I(k)z ) = I

(j)
z I

(k)
z , so the overall term remains unchanged. Therefore the

dipolar interaction is decoupled to lowest order when I
(j)
z I

(k)
z is toggled for equal time

along the x, y, and z-axes.

To decouple all interactions, both constraints above must be satisfied, which is achieved

when Iz is toggled along each of the six axes for equal time (±x,±y,±z). By keeping track

34



3.3 AHT-Constrained Search

of the toggled operator Ĩz while constructing the pulse sequence, it is possible to prune

branches of the tree that would violate this constraint. Choi et al. (2020) introduces a for-

mal matrix representation for the Ĩz transformation and derives a set of constraints on

pulse sequences for Hamiltonian engineering, some of which are mentioned above.
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Chapter 4

Results

To analyze the performance of the AlphaZero algorithm for constructing pulse se-

quences, different sets of algorithm hyperparameters and system parameters were tested.

AlphaZero was first run with no additional constraints to the tree search (i.e. the state

space contains all possible sequences of pulses), and the simulated spin systems were

idealized (i.e. delta-pulses and no experimental errors). Additional constraints were then

added to the tree search while keeping idealized spin system simulations. Finally, exper-

imental imperfections were introduced to the simulations.

As a preliminary consistency check, the AlphaZero algorithm was run with identical

settings 10 times, and the resulting distribution of rewards during training was recorded.

In figure 4.1, it is evident that most of the runs perform similarly, but a few significantly

outperform the rest, achieving over an order of magnitude improvement in fidelity. Fur-

thermore, most of the runs plateau after about 5000 training steps, indicating the policy

network converged to a particular policy. The inconsistent performance across identi-

cal runs could be improved by further tuning the algorithm hyperparameters, such as

the amount of noise added to the policy, increasing the exploration rate in the MCTS, or

adjusting the relative rate of training to data collection.
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Figure 4.1: The mean reward (− log(1− fidelity)) seen during training for 10 identical runs
of the AlphaZero algorithm searching for 24τ sequences. The simulations included finite
pulse width with no experimental errors. Most runs converge to similar mean fidelities,
but a few runs have orders of magnitude better performance.

For the completely unconstrained search and idealized spin system simulations, Alp-

haZero converges to an effective policy only for the 12-pulse sequence (figure 4.2a). Al-

phaZero tries random pulse sequences with low fidelity early in training, but quickly

“learns” to construct pulse sequences with fidelity ≈ 1− 10−8.
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(c) 48τ sequence

Figure 4.2: Distribution of rewards (− log(1− fidelity)) during AlphaZero training. No
constraints were applied to the tree search, and the simulated spin systems were ideal-
ized.

However, for longer pulse sequences with 24 or 48 actions, unconstrained search is un-

able to converge to similarly effective policies as for shorter sequences. For the 24-pulse

sequence (figure 4.2b), the policy after 2000 training steps constructs pulse sequences with

fidelity ≈ 1− 10−6, about two orders of magnitude worse than for the 12-pulse sequence.

And for the 48-pulse sequence (figure 4.2b), the policy constructs pulse sequences with

even lower fidelities. Even after 8000 training steps, the policy still constructs pulse se-

quences with fidelity ≈ 0 over 30% of the time.

The worsening performance as the pulse sequence length increases is understandable.

For an n-pulse sequence with a possible actions, there are an possible pulse sequences,
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and an+1−1
a−1 possible states1. If n = 12, then there are over 244 million pulse sequences

and over 300 million states. But for n = 24, then the number of pulse sequences jumps

to 6 × 1016, and for n = 48 there are 3.6 × 1033. Because AlphaZero begins training tab-

ula rasa, none of the states in the astronomically large state space are preferred by the

agent, so it begins with a purely random search. Furthermore, rewards are only received

once an entire pulse sequence has been constructed. The sparse reward signal (which is

the sole driver of learning in RL algorithms) therefore makes it difficult for the agent to

associate actions with rewards and learn an effective policy. This is known as the “credit

assignment problem” and is an active area of research both in theoretical and applied RL

(Arumugam et al. (2021)).

For example, suppose you needed to pass a test with 100 questions, and could re-take

the test as many times as you want. It would take many more tries to pass if the only

feedback you received was your overall score on the test, as opposed to your score on

each question.

There is not an immediately obvious way to provide additional rewards to the agent

during training2, but there are ways to constrain AlphaZero’s tree search to only consider

subsets of the state space. As described in section 3.3, the lowest-order term in the average

Hamiltonian can be set to the desired Hamiltonian by requiring that the toggling frame

spend equal durations in different orientations. To decouple all interactions, the toggling

frame must spend equal time along each axis (i.e. Iz must be toggled to ±Ix,±Iy,±Iz

for equal times). By adding this constraint to the tree search, all pulse sequences at least

have the correct average Hamiltonian to lowest order. This does not address the cyclic

requirement for those pulse sequences (i.e. the toggling frame coincide with the lab frame

at the end of the pulse sequence), the higher-order terms in the average Hamiltonian, nor

experimental imperfections.

1This can be seen by counting how many subsequences of length k there are (ak), and adding these for
k = 1, . . . , n.

2From an experimental perspective, we only care about the fidelity of the pulse sequence overall, not at
intermediate times.
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Figure 4.3 shows the distributions of pulse sequence fidelities for the 12τ, 24τ , and 48τ

sequences during training. Despite restricting the state space in a way that should guar-

antee higher fidelities, the fidelities are actually lower for the 12τ and 24τ sequences, and

are comparable for the 48τ sequence. These discrepancies are likely due to the inherent

randomness of the algorithm (as seen in figure 4.1), but more careful analysis is needed

to understand the observed differences.
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Figure 4.3: Distribution of rewards (− log(1− fidelity)) during AlphaZero training.
Lowest-order AHT constraints were applied to the tree search, and the simulated spin
systems were idealized.

Because the lowest-order average Hamiltonian constraint didn’t clearly improve per-

formance, an even stronger constraint was added to the tree search to further restrict the

state space: to decouple interactions to lowest order every 6τ , instead of decoupling in-
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teractions for the pulse sequence overall. There are 200 sequences of length 6τ that will

decouple all interactions to lowest order, significantly fewer than 56 = 15625 possible

sequences without any constraints. The resulting fidelities (figure 4.4) are significantly

higher for the 24τ and 48τ sequences during training, comparable to the shorter 12τ se-

quence.
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Figure 4.4: Distribution of rewards (− log(1− fidelity)) during AlphaZero training.
Lowest-order AHT constraints and refocusing all interactions every 6τ were applied to
the tree search, and the simulated spin systems were idealized.

The 6τ refocusing constraint, while empirically beneficial for the AlphaZero tree search,

raises some questions. By introducing this constraint, is the algorithm excluding high-

fidelity pulse sequences that do not follow this constraint? The CORY48 pulse sequence

in fact does not refocus all interactions to lowest order until the end of the pulse sequence,
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4.1 Robustness Evaluation

and its fidelity is much higher than any pulse sequence found using AlphaZero. Instead,

it decouples dipolar interactions every 9τ , which is a more relaxed constraint.

During training, pulse sequences with fidelity above a given threshold are recorded,

and the highest-fidelity pulse sequence is chosen as a “candidate” for further evaluation

(it would be impractical to evaluate each of the thousands of pulse sequences constructed

by AlphaZero). The AlphaZero algorithm was originally designed to play board games,

where the trained policy function defined on the entire state space is more important than

the specific sequence of moves played in training games. In contrast, for designing pulse

sequences, the final policy is less important than identifying a single pulse sequence with

high fidelity and robustness to errors. The policy is only a tool for exploring the state

space for high-fidelity pulse sequences.

4.1 Robustness Evaluation

Although it is straightforward to simulate spin systems under ideal conditions with-

out any experimental imperfections, this never happens in reality. Therefore, it is impor-

tant to consider how the pulse sequences perform in the presence of errors and determine

their robustness. The errors considered below include pulse rotation errors, phase tran-

sient errors, and resonant offset errors.

Pulse rotation errors, either under- or over-rotating the spins, are common in NMR

and electron spin resonance (ESR) systems due to limited precision in both the rf-field

strength and the pulse width tp. If the pulse strength or duration is too high (or too

low), then the toggling frame will be rotated greater (or less) than π/2 and the average

Hamiltonian will not necessarily match the target Hamiltonian. See figure 4.5 for a visual

depiction of rotation errors for a single spin.
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under-rotated

over-rotated

Figure 4.5: Pulse rotation errors for a single spin.

Phase transient errors are another pulse-related error that are present in experimental

systems. When applying a pulse, the non-zero impedance in the circuit will induce small

additional pulses in quadrature to the intended pulse when the rf field rises and falls. For

example, applying an X pulse will also apply slight rotations about the y axis when the

BX field rises and falls. See figure 4.6 for an ideal pulse compared to a pulse with phase

transients. To simulate phase transient errors, each of the X, Y,X , and Y actions were

modified to include slight rotations along y,−x,−y, and x immediately before and after

the pulse. The rotation angle was parameterized as a fraction of π/2.

Figure 4.6: An ideal pulse (a) compared to a pulse with phase transients (b). Illustration
from Haeberlen (1976).

Finally, resonance offset errors occur when the rf field is not matched to the Larmor

frequency of the spins. The rotating frame therefore does not rotate precisely with the

spins, but at an offset frequency.
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4.1 Robustness Evaluation

The highest-fidelity pulse sequences from the 12τ, 24τ , and 48τ sequence searches3

with AHT and 6τ refocusing constraints were evaluated for robustness against the ex-

perimental imperfections introduced above. To compare each of the different-length se-

quences on the same footing, each pulse sequence was repeated over a total duration of

288τ . That is, the 12τ sequence was repeated 24 times, the 24τ sequence was repeated 12

times, the 48τ repeated 6 times, and CORY48 (a 72τ sequence) repeated 4 times.

For small rotation errors (< 1% of a π/2-pulse) the fidelity for all pulse sequences

declines dramatically (see figure 4.7). This is not entirely unexpected however: the spin

systems during training were idealized, so no errors of any kind were included. As a

result, there was no reward signal for constructing robust pulse sequences, only pulse

sequences that did well under ideal conditions.
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Figure 4.7: Robustness against rotation errors, relative to a π/2-pulse. Training simula-
tions included no errors, and evaluation simulations included only rotation errors. The
pulse sequences identified using AlphaZero have very poor robustness to rotation errors,
while the CORY48 sequence (which was designed using AHT to be robust to such errors)
has high fidelity for a much broader range of rotation errors.

3See the appendix for an explicit presentation of these pulse sequences.
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4.1 Robustness Evaluation

Similarly, the pulse sequences are much less robust to phase transient error (figure 4.8),

or resonance offset error (figure 4.9). Interestingly, the 12τ sequence seems to be highly

robust to phase transient error, but the fidelity is comparably worse overall.
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Figure 4.8: Robustness against phase transient errors, where the quadrature rotations are
relative to a π/2-pulse. Training simulations included no errors, and evaluation simula-
tions included only rotation errors.
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Figure 4.9: Robustness against resonant offset error, relative to the chemical shift strength.
Training simulations included no errors, and evaluation simulations included only rota-
tion errors.

To search for robust pulse sequences, errors were intentionally introduced into the spin

systems during training. First, only rotation errors were included by sampling a random

rotation error εr ∼ N (µ = 0, σ = .01) for each spin system during training. Then instead

of having perfect π/2-pulses, all pulses in a particular spin system rotate the spins by

π
2
(1 + εr). The resulting pulse sequences were significantly more robust to rotation errors

(figure 4.10) compared to training without any errors (figure 4.7).
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Figure 4.10: Robustness against rotation errors, relative to a π/2-pulse. Training simu-
lations included only rotation errors, and evaluation simulations included only rotation
errors. The pulse sequences identified from training with rotation errors have improved
robustness to rotation errors, as compared with training in the absence of rotation errors.

Finally, the AlphaZero algorithm was run with multiple experimental imperfections:

rotation error εr ∼ N (0, .01), phase transient error εpt ∼ N (0, 10−4), and resonance offset

error εo ∼ N (0, 101). The policy function was rewarded for high-fidelity pulse sequences

in the presence of those errors, and consequently should identify pulse subsequences

robust to multiple errors. For a range of rotation, phase transient, and resonance offset

error (figures 4.11 to 4.13), the pulse sequences from training with simulated errors are

more robust than those from training with no errors.
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Figure 4.11: Robustness against pulse rotation errors. Training simulations included ro-
tation, phase transient, and resonance offset errors (“all errors”), and evaluation simula-
tions included all errors.
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Figure 4.12: Robustness against phase transient errors, where the quadrature rotations
are relative to a π/2-pulse. Training simulations included rotation, phase transient, and
resonance offset errors (“all errors”), and evaluation simulations included all errors.
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Figure 4.13: Robustness against resonance offset errors, relative to chemical shift strength.
Training simulations included rotation, phase transient, and resonance offset errors (“all
errors”), and evaluation simulations included all errors.

Despite the improved robustness by including errors in training, the resulting pulse

sequences still have significantly lower rewards (and thus lower fidelity) than the CORY48

pulse sequence in simulated spin systems. This holds true across different possible errors

and at every magnitude of error tested. In short, the reinforcement learning approach

tried in this work is not as effective as the AHT-based analytical process used to design

CORY48.

4.2 Experimental Validation

In addition to computational simulations, the best-performing 48τ pulse sequence

was tested against the CORY48 pulse sequence in a solid-state NMR spectrometer. An

adamantane sample was used.

While the fidelity of a unitary matrix is straightforward to calculate in simulation,

measuring the fidelity in experiment is much more difficult, as it would require evalua-
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tion on a complete basis of states (i.e. quantum process tomography). Instead, the fidelity

is qualitatively approximated by the average correlation Cavg (Peng et al. (2021))

Cavg = (CXXCY YCZZ)1/3 (4.1)

where the correlation function CXX(t) is the expected signal from initializing the state

along X and measuring magnetization along X .
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Figure 4.14: The average correlation in an adamantane sample for the 48τ -pulse sequence
identified using AlphaZero with all errors in training, and for the CORY48 pulse se-
quence.

The experimental correlation functions (figure 4.14) further support the computational

results: the RL-based 48τ pulse sequence does decouple interactions, but not as effectively

as the CORY48 pulse sequence.
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Chapter 5

Conclusion and Future Work

Hamiltonian engineering encompasses a variety of important problems in quantum

physics and quantum control. For spin systems in particular, the ability to decouple

dipolar interactions is desirable for improving spectroscopy and increasing spin coher-

ence times. Existing approaches to Hamiltonian engineering via average Hamiltonian

theory have been effective. The CORY48 pulse sequence was designed analytically using

AHT to decouple all interactions to second order, and is robust to common errors in spin

systems (Cory et al. (1990)). However, there is still room for improvement in increasing

coherence times, and it is unclear whether analytical AHT-based methods can be taken

further because the higher-order terms in the Magnus expansion become increasingly

computationally expensive to calculate. Other approaches to Hamiltonian engineering

may prove to be more promising.

Reinforcement learning (RL) algorithms have expanded dramatically over the past

decade into a broad array of problems. The AlphaZero algorithm was used to develop

pulse sequences for decoupling all interactions (H = 0) in a spin system. The RL algo-

rithm by itself was only effective at identifying high-fidelity pulse sequences for short

sequences. After introducing additional constraints to the algorithm’s tree search, high-

fidelity pulse sequences were found for all sequence lengths considered. And by intro-
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ducing common errors in the spin system simulations during training, the algorithm

found pulse sequences that were robust to those errors. However, the RL-based pulse

sequences did not outperform the CORY48 pulse sequence in computational simulations

or experiment.

Although the current RL implementation failed to outperform existing analytical ap-

proaches, there are several factors that may be considered for improvement. First, the

hyperparameters used for the AlphaZero algorithm were largely unchanged from the

original publication, with the exception of the exploration noise added during tree search.

Hyperparameter tuning specifically for Hamiltonian engineering may improve the algo-

rithm’s performance and increase the fidelities of the resulting pulse sequences. In par-

ticular, changing the exploration rate and the training rate relative to data collection from

tree search may be fruitful paths to explore.

In addition to optimizing the RL algorithm, using a different set of constraints in the

tree search may be beneficial. The 6τ total decoupling constraint that was implemented

is not followed in other pulse sequences, including CORY48, so it is possible that decou-

pling all interactions every 6τ is too strong a constraint on pulse sequences. Two obvious

constraints to consider are decoupling dipolar interactions only every 9τ , and requiring

the pulse sequence use equal numbers of X,X, Y, Y pulses (both of which are done in

the CORY48 sequence). Satisfying higher-order terms in the average Hamiltonian with

additional constraints would also be beneficial.

There are other interesting avenues to consider to improve the RL algorithm. One

of those avenues is curriculum learning, where the agent learns to solve progressively

more difficult tasks (Narvekar et al. (2020)). For Hamiltonian engineering, this may be

done by starting with short pulse sequences, and progressively constructing longer pulse

sequences.

The spin system simulations for training in the RL algorithm and evaluation of pulse

sequences were in the short-τ delay regime (dτ � 1), which improves the ability of the
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pulse sequences to decouple interactions. However, this is not always realized in exper-

iment, where dτ ≈ 0.1 or greater. It would be worth exploring training with longer τ

delays and see how both computational and experimental results change.

Although the primary focus for this work is Hamiltonian engineering, there are many

other quantum control problems that could be approached using RL algorithms. Such

problems include state-to-state transfer, quantum gate implementation, or bath engineer-

ing.
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Appendix

5.1 Important Quantum Mechanics Concepts

This section is meant to present a few fundamental ideas that are used throughout

this work, but for a more thorough description of quantum mechanics see McIntyre et al.

(2012); Sakurai and Napolitano (2017). In all equations that follow, ~ = 1 is assumed.

Given a quantum system, a general state can be represented by a density operator ρ(t).

The density operator encapsulates all known information about the quantum system,

specifically the expectation values associated with well-defined observable. The density

operator is Hermitian (ρ† = ρ) and Tr(ρ) = 1. For an observable Â, there is a correspond-

ing Hermitian operator A, with the expectation is given by

〈A〉 = Tr{ρA} (5.1)

The time evolution of the density operator is given by

ρ(t) = U(t)ρ(0)U(t)† (5.2)

where the unitary operator U is the “propagator” defined by

i
dU(t)

dt
= H(t)U(t), U(0) = 1 (5.3)
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When the Hamiltonian is time-independent or if the Hamiltonian commutes with it-

self at different points in time (i.e. [H(t1), H(t2)] = 0), equation 5.3 can be solved to obtain

the propagator

U(t) = exp
[
−i
∫ t

0

H(t′)dt′
]

(5.4)

However, if the Hamiltonian is time-dependent and doesn’t commute with itself at dif-

ferent times, then the above equation is not valid. This difficulty with time-dependent

Hamiltonians and methods with dealing with them are further discussed in 1.2.1.

In many cases it can be helpful to consider the interaction frame of a particular interac-

tion. If the Hamiltonian is expressed as the sum of two terms

H(t) = HA(t) +HB(t) (5.5)

then there is a unitary operator UA(t) given by

d

dt
UA(t) = −iHA(t)UA(t), UA(0) = 1 (5.6)

that maps from the interaction frame to the lab frame. The dynamics in the interaction

frame are described by the interaction frame Hamiltonian H̃(t) = UA(t)†HB(t)UA(t)

d

dt
Ũ(t) = −iH̃(t)Ũ(t), Ũ(0) = 1 (5.7)

The propagator in the lab frame U(t) is related to Ũ(t) by first time evolution in the inter-

action frame, then mapping from the interaction frame to the lab frame

U(t) = UA(t)Ũ(t). (5.8)
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5.2 Neural Network Architecture
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Figure 5.1: The policy and value network architecture.

5.3 Pulse Sequence Definitions

5.3.1 CORY48

X, τ, Y, 2τ,X, τ, Y, 2τ,X, τ, Y, 2τ,X, τ, Y, 2τ,X, τ, Y , 2τ,X, τ, Y, 2τ,

Y , τ,X, 2τ, Y, τ,X, 2τ, Y , τ,X, 2τ, Y , τ,X, 2τ, Y , τ,X, 2τ, Y , τ,X, 2τ,

X, τ, Y, 2τ,X, τ, Y , 2τ,X, τ, Y, 2τ,X, τ, Y , 2τ,X, τ, Y , 2τ,X, τ, Y , 2τ,

Y, τ,X, 2τ, Y, τ,X, 2τ, Y, τ,X, 2τ, Y , τ,X, 2τ, Y, τ,X, 2τ, Y , τ,X, 2τ

5.3.2 AlphaZero Pulse Sequences: No Errors

12τ
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5.3 Pulse Sequence Definitions

X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ, Y , τ,X, τ,X, τ, Y , τ,X, τ,X, τ

24τ

Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ,X, τ, Y , τ,X, τ,

Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ,X, τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ

48τ

Y , τ,X, τ, Y , τ,X, τ, Y , τ,X, τ, Y, τ,X, τ, Y, τ,X, τ,X, τ, Y, τ,

Y, τ,X, τ,X, τ, Y, τ,X, τ,X, 2τ,X, τ, Y , τ,X, τ,X, τ, Y , τ,X, τ,

X, τ, Y , τ,X, τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ,X, τ,X, τ, Y , 2τ, Y , τ,

Y , τ,X, τ, Y , τ, Y , τ,X, τ, Y, τ,X, τ, Y, τ,X, τ, Y, τ

5.3.3 AlphaZero Pulse Sequences: Rotation Errors

12τ

τ,X, τ,X, τ, Y, τ,X, τ,X, 2τ,X, τ,X, τ, Y , τ,X, τ,X, τ

24τ

Y , τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ,

Y, τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ

48τ
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5.3 Pulse Sequence Definitions

Y , τ, Y , τ,X, τ,X, τ,X, τ, Y , τ,X, τ, Y, τ,X, τ,X, τ, Y, τ,X, τ,

Y , τ,X, τ, Y , τ,X, τ,X, τ, Y , τ, Y, τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ,

Y , τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ,X, τ,X, τ, Y, τ,X, τ,X, τ,

Y , τ,X, τ,X, τ, Y , τ,X, τ,X, τ, Y , τ,X, τ,X, τ, Y , τ,X, τ,X, τ

5.3.4 AlphaZero Pulse Sequences: All Errors

12τ

Y , τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ

24τ

Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ, Y, τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ,

X, τ, Y, τ,X, τ,X, τ, Y, τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ

48τ

X, τ,X, τ, Y , τ,X, τ,X, τ, Y , τ,X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ,

X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ, Y, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ,

X, τ,X, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ, Y, τ,X, τ, Y, τ, Y, τ,X, τ,

X, τ, Y , τ, Y , τ,X, τ, Y , τ, Y , τ, Y , τ,X, τ,X, τ, Y , τ,X, τ,X, τ
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